Continuity of critical exponent of quasiconvex-cocompact groups under Gromov–Hausdorff convergence
نویسندگان
چکیده
Abstract We show continuity under equivariant Gromov–Hausdorff convergence of the critical exponent discrete, non-elementary, torsion-free, quasiconvex-cocompact groups with uniformly bounded codiameter acting on Gromov-hyperbolic metric spaces.
منابع مشابه
On the Exponent of Triple Tensor Product of p-Groups
The non-abelian tensor product of groups which has its origins in algebraic K-theory as well as inhomotopy theory, was introduced by Brown and Loday in 1987. Group theoretical aspects of non-abelian tensor products have been studied extensively. In particular, some studies focused on the relationship between the exponent of a group and exponent of its tensor square. On the other hand, com...
متن کاملSmall Generators of Cocompact Arithmetic Fuchsian Groups
In the study of Fuchsian groups, it is a nontrivial problem to determine a set of generators. Using a dynamical approach we construct for any cocompact arithmetic Fuchsian group a fundamental region in SL2(R) from which we determine a set of small generators.
متن کاملHomological Dimension and Critical Exponent of Kleinian Groups
We prove an inequality between the relative homological dimension of a Kleinian group Γ ⊂ Isom(Hn) and its critical exponent. As an application of this result we show that for a geometrically finite Kleinian group Γ, if the topological dimension of the limit set of Γ equals its Hausdorff dimension, then the limit set is a round sphere.
متن کاملCocompact Subgroups of Semisimple Lie Groups
Lattices and parabolic subgroups are the obvious examples of cocompact subgroups of a connected, semisimple Lie group with finite center. We use an argument of C. C. Moore to show that every cocompact subgroup is, roughly speaking, a combination of these. We study a cocompact subgroup H of a connected, semisimple Lie group G with finite center. The case where H is discrete is very important and...
متن کاملConvex cocompact subgroups of mapping class groups
We develop a theory of convex cocompact subgroups of the mapping class group MCG of a closed, oriented surface S of genus at least 2, in terms of the action on Teichmüller space. Given a subgroup G of MCG de ning an extension 1 ! 1(S) ! ΓG ! G ! 1, we prove that if ΓG is a word hyperbolic group then G is a convex cocompact subgroup of MCG. When G is free and convex cocompact, called a Schottky ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Ergodic Theory and Dynamical Systems
سال: 2022
ISSN: ['0143-3857', '1469-4417']
DOI: https://doi.org/10.1017/etds.2022.9